Duality in generalized linear fractional programming
نویسندگان
چکیده
This is a generalization of a fractional programming problem (p = 1) which has been investigated quite actively in the last two decades [21 ]. In [20] many of the results in fractional programming are reviewed and extended. An extensive bibliography is given in [22]. An early application of generalized fractional programming (p > 1) is von Neumann's model of an expanding economy [25]. Here the functions f,, g~ are linear and K is the nonnegative orthant.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملUsing duality to solve generalized fractional programming problems
In this paper we explore the relations between the standard dual problem of a convex generalized fractional programming problem and the “partial” dual problem proposed by Barros et al. (1994). Taking into account the similarities between these dual problems and using basic duality results we propose a new algorithm to directly solve the standard dual of a convex generalized fractional programmi...
متن کاملModified FGP approach and MATLAB program for solving multi-level linear fractional programming problems
In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...
متن کاملGeneralized (, b, ϕ, ρ, θ)-univex n-set functions and global parametric sufficient optimality conditions in minmax fractional subset programming
where An is the n-fold product of the σ-algebra A of subsets of a given set X , Fi, Gi, i∈ p ≡ {1,2, . . . , p}, and Hj , j ∈ q, are real-valued functions defined on An, and for each i∈ p, Gi(S) > 0 for all S∈An such that Hj(S) ≤ 0, j ∈ q. Optimization problems of this type in which the functions Fi, Gi, i∈ p, and Hj , j ∈ q, are defined on a subset of Rn (n-dimensional Euclidean space) are cal...
متن کاملOn Rohn’s Relative Sensitivity Coefficient of the Optimal Value for a Linear-fractional Program
In this note we consider a linear-fractional programming problem with equality linear constraints. Following Rohn, we define a generalized relative sensitivity coefficient measuring the sensitivity of the optimal value for a linear program and a linear-fractional minimization problem with respect to the perturbations in the problem data. By using an extension of Rohn’s result for the linear pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 29 شماره
صفحات -
تاریخ انتشار 1983